
Theor Ecol
DOI 10.1007/s12080-011-0112-6

ORIGINAL PAPER

Generalized modeling of ecological population dynamics

Justin D. Yeakel · Dirk Stiefs · Mark Novak ·
Thilo Gross

Received: 1 October 2010 / Accepted: 13 January 2011
© The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract Over the past 7 years, several authors have
used the approach of generalized modeling to study the
dynamics of food chains and food webs. Generalized
models come close to the efficiency of random matrix
models, while being as directly interpretable as con-
ventional differential-equation-based models. Here, we
present a pedagogical introduction to the approach of
generalized modeling. This introduction places more
emphasis on the underlying concepts of generalized
modeling than previous publications. Moreover, we
propose a shortcut that can significantly accelerate the
formulation of generalized models and introduce an
iterative procedure that can be used to refine existing
generalized models by integrating new biological in-
sights.
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Introduction

Ecological systems are fascinating because of their
complexity. Not only do ecological communities har-
bor a multitude of different species, but even the
interaction of just two individuals can be amaz-
ingly complex. For understanding ecological dynam-
ics, this complexity poses a considerable challenge.
In conventional mathematical models, the dynam-
ics of a system of interacting species are described
by a specific set of ordinary differential equations
(ODEs). Because these equations are formulated on
the level of the population, all complexities aris-
ing in the interaction of individuals must be cast
into specific functional forms. Indeed, several im-
portant works in theoretical ecology present deriva-
tions of functional forms that include certain types
of individual-level effects (Holling 1959; Rosenzweig
1971; Berryman 1981; Getz 1984; Fryxell et al. 2007).
Although these allow for a much more realistic rep-
resentation than, say, simple mass-action models, they
cannot come close to capturing all the complexities
existing in the real system. Even if detailed knowledge
of the interactions among individuals were available
and could be turned into mathematical expressions,
these would arguably be too complex to be conducive
to a mathematical analysis. In this light, the functional
forms that are commonly used in models can be seen as
a compromise, reflecting the aim of biological realism,
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the need to keep equations simple, and often the lack
of detailed information.

Because of the many unknowns that exist in ecology,
it is desirable to obtain results that are independent
of the specific functional forms used in the model.
This has been achieved by a number of studies that
employed general models, in which at least some func-
tional forms were not specified (Gardner and Ashby
1970; May 1972; DeAngelis et al. 1975; Murdoch and
Oaten 1975; Levin 1977; Murdoch 1977; Wollkind et al.
1982). These works considered not specific models, but
rather classes of models comprising simple, commonly
used, functions, as well as the whole range of more
complex alternatives.

That ecological systems can be analyzed without
restricting the interactions between populations to
specific functional forms is in itself not surprising–in
every mathematical analysis the objects that are ana-
lyzed can be treated as unknown. The results of the
analysis will then depend on certain properties of the
unknown objects. In a general ecological model we
thus obtain results that link dynamical properties of the
model, e.g., the presence of predator–prey oscillations
to properties of the (unknown) functions describing
certain processes, e.g., the slope of the functional re-
sponse evaluated at a certain point. Accordingly, the
analysis of general models reveals the decisive prop-
erties of the functional forms that have a distinctive
impact on the dynamics. Whether such results are eco-
logically meaningful depends crucially on our ability
to attach an ecological interpretation to the decisive
properties that are identified.

In the present paper, we specifically consider the
approach called generalized modeling. This approach
constitutes a procedure by which the local dynamics in
models can be analyzed in such a way that the results
are almost always interpretable in the context of the ap-
plication. Generalized modeling was originally devel-
oped for studying food chains (Gross and Feudel 2004;
Gross et al. 2004, 2005) and was only later proposed
as a general approach to nonlinear dynamical systems
(Gross and Feudel 2006). Subsequently, generalized
modeling was used in systems biology, where it is some-
times called structural-kinetic modeling (Steuer et al.
2006, 2007; Zumsande and Gross 2010; Reznik and
Segrè 2010) and is covered in recent reviews (Steuer
2007; Sweetlove et al. 2008; Jamshidi and Palsson 2008;
Steuer and Junker 2009; Rodriguez and Infante 2009;
Schallau and Junker 2010). In ecology, generalized
models have been employed in several recent studies
(Baurmann et al. 2007; van Voorn et al. 2007; Gross

et al. 2009; Gross and Feudel 2009; Stiefs et al. 2010),
for instance for exploring the effects of food quality
on producer-grazer systems (Stiefs et al. 2010) and for
identifying stabilizing factors in large food webs (Gross
et al. 2009). The latter work demonstrated that the ap-
proach of generalized modeling can be applied to large
systems comprising 50 different species and billions of
food web topologies.

In the present paper, we present a pedagogical intro-
duction to generalized modeling and explain the under-
lying idea on a deeper level than previous publications.
Furthermore, we propose some new techniques that
considerably facilitate the formulation and analysis of
generalized models. The approach is explained using a
series of ecological examples of increasing complexity,
including a simple model of omnivory that has so far
not been analyzed by generalized modeling.

We start out in “Local analysis of dynamical
systems” with a brief introduction to fundamental con-
cepts of dynamical systems theory. Readers who are
familiar with bifurcations may wish to move directly
to “Density-dependent growth of a single species”,
where we introduce generalized modeling by consid-
ering the example of a single population. In contrast
to previous generalized analyses of this system, we
use a shortcut that accelerates the formulation of gen-
eralized models. An alternative derivation is used in
Section “Predator–prey dynamics”, where we apply
generalized modeling to a predator–prey system. Our
final example, shown in “Intraguild predation”, is a
simple omnivory scenario involving three species. This
example already contains all of the difficulties that are
encountered in the analysis of larger food webs.

Local analysis of dynamical systems

Generalized modeling builds on the tools of nonlinear
dynamics and dynamical systems theory. Specifically,
information is typically extracted from generalized
models by a local bifurcation analysis. Mathematically
speaking, a bifurcation is a qualitative transition in
the long-term dynamics of the system, such as the
transition from stationary (equilibrium) to oscillatory
(cyclic) long-term dynamics. The corresponding critical
parameter value at which the transition occurs is called
the bifurcation point. In this section, we review the basic
procedure for locating bifurcation points in systems of
coupled ODEs. This analysis is central to the explo-
ration of both generalized and conventional models
and is also covered in many excellent text books, for
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instance (Kuznetsov 2004; Guckenheimer and Holmes
2002).

In the following, we consider systems of N coupled
equations

d
dt

xi = fi(x) (1)

where x = (x1, . . . , xN) is a vector of variables and f (x)

is a vector-valued function. In population dynamics,
each xi typically corresponds to a population, repre-
senting the abundance, biomass, or biomass density.

The simplest form of long-term behavior that can be
observed in systems of ODEs is stationarity. In a steady
state x∗ the right-hand side of the equations of motion
vanishes,

d
dt

xi
∗ = 0 (2)

for all i. Therefore, a system that is placed in a steady
state will remain at rest for all time.

Stationarity alone does not imply that a state is a
stable equilibrium. A system that is perturbed slightly
from the steady state may either return to the steady
state asymptotically in time or depart from the steady
state entirely. For deciding whether a steady state is
stable against small perturbations, we consider the local
linearization of the system around the steady state,
which is given by the corresponding Jacobian J, an
N × N matrix with

Jij = ∂

∂x j
fi(x)

∣∣∣∣
∗

(3)

where |∗ indicates that the derivative is evaluated in the
steady state.

Because the Jacobian is a real matrix, its eigenvalues
are either real or form complex conjugate eigenvalue
pairs. A given steady state is stable if all eigenvalues of
the corresponding Jacobian J have negative real parts.
When the function f (x) is changed continuously, for
instance by a gradual change of parameters on which
f (x) depends, the eigenvalues of the corresponding
Jacobian change continuously as well.

Local bifurcations occur when a change in parame-
ters causes one or more eigenvalues to cross the imagi-
nary axis of the complex plane. In general, this happens
in either of two scenarios: In the first scenario, a real
eigenvalue crosses the imaginary axis, causing a saddle-
node bifurcation. In this bifurcation, two steady states
collide and annihilate each other. If the system was
residing in one of the steady states before the transition,
the variables typically change rapidly while the system

approaches some other attractor. In ecology crossing
a saddle-node bifurcation backwards can, for instance,
mark the onset of a strong Allee effect. In this case, one
of the two steady states emerging from the bifurcation
is a stable equilibrium, whereas the other is an unstable
saddle, which marks the tipping point between long-
term persistence and extinction.

In the second scenario, a complex conjugate pair of
eigenvalues crosses the imaginary axis, causing a Hopf
bifurcation. In this bifurcation, the steady state be-
comes unstable and either a stable limit cycle emerges
(supercritical Hopf) or an unstable limit cycle vanishes
(subcritical Hopf). The supercritical Hopf bifurcation
marks a smooth transition from stationary to oscillatory
dynamics. A famous example of this bifurcation in
biology is found in the Rosenzweig–MacArthur model
(Rosenzweig and MacArthur 1963), where enrichment
leads to destabilization of a steady state in a supercrit-
ical Hopf bifurcation. By contrast, the subcritical Hopf
bifurcation is a catastrophic bifurcation after which the
system departs rapidly from the neighborhood of the
steady state.

In addition to the generic local bifurcation scenar-
ios, discussed above, degenerate bifurcations can be
observed if certain symmetries exist in the system. In
many ecological models, one such symmetry is related
to the unconditional existence of a steady state at zero
population densities. If a change of parameters causes
another steady state to meet this extinct state, then the
system generally undergoes a transcritical bifurcation
in which the steady states cross and exchange their
stability. The transcritical bifurcation is a degenerate
form of the saddle-node bifurcation and is, like the
saddle-node bifurcation, characterized by the existence
of a zero eigenvalue of the Jacobian. Although we
assume that the steady state X∗ under consideration is
positive we shows in Section “Predator–prey dynamics”
that the generalized analysis can include transcritical
bifurcations as limit cases.

Density-dependent growth of a single species

In this section, we demonstrate how the approach of
generalized modeling can be used to find local bifur-
cations in general ecological models. We start with the
simplest example: the growth of a single-population X.
A generalized model describing this type of system can
be written as
d
dt

X = S(X) − D(X) (4)
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where X denotes the biomass or abundance of popula-
tion X, S(X) models the intrinsic gain by reproduction,
and D(X) describes the loss due to mortality. In the
following we do not restrict the functions S(X) and
D(X) to specific functional forms.

We consider all positive steady states in the whole
class of systems described by Eq. 4 and ask which of
those states are stable equilibria. For this purpose we
denote an arbitrary positive steady state of the system
as X∗. We emphasize that X∗ is not a placeholder for
any specific steady state that will later be replaced by
numerical values, but should rather be considered a
formal surrogate for every positive steady state that
exists in the class of systems.

For finding the decisive factors governing the stabil-
ity of X∗, we compute the Jacobian

J∗ = ∂S
∂ X

∣∣∣∣
∗
− ∂ D

∂ X

∣∣∣∣
∗
. (5)

Because evaluated in the steady state, the two terms
appearing on the right-hand side of this equation are
no longer functions but constant quantities. We could
therefore formally consider these terms as unknown pa-
rameters. While mathematically sound, parameterizing
the Jacobian in this way leads to parameters that are
hard to interpret in the context of the model and are
therefore not conducive to an ecological analysis. We
therefore take a slightly different approach and use the
identity

∂ F
∂ X

∣∣∣∣
∗

= F∗

X∗
∂ log F
∂ log X

∣∣∣∣
∗
, (6)

where F is an arbitrary positive function and we ab-
breviated F(X∗) by F∗. The identity, Eq. 6, holds
for all F∗ > 0 and X∗ > 0; its derivation is shown in
Appendix 1. Substituting the identity into the Jacobian,
we obtain

J∗ = S∗

X∗ sx − D∗

X∗ dx. (7)

where

sx := ∂ log S
∂ log X

∣∣∣∣
∗
, (8)

dx := ∂ log D
∂ log X

∣∣∣∣
∗
. (9)

We note that S∗/X∗ and D∗/X∗ denote per-capita
gain and loss rates, respectively. Because the gain and
loss have to balance in the steady state we can define

α := S∗

X∗ = D∗

X∗ . (10)

The parameter α can be interpreted as a characteristic
timescale of the population dynamics. If X measures
abundance then this timescale is the per-capita mortal-
ity rate or in other words, the inverse of an individual’s
life expectancy. If X is defined as a biomass then α de-
notes the biomass turnover rate. Using α the Jacobian
can be written as

J∗ = α (sx − dx) . (11)

Let us now discuss the interpretation of the para-
meters sx and dx. For this purpose, note that these
parameters are defined as logarithmic derivatives of
the original functions. Such parameters are also called
elasticities, because they provide a nonlinear measure
for the sensitivity of the function to variations in the
argument. For any power-law aX p the corresponding
elasticity is p. For instance, all constant functions have
an elasticity of 0, all linear functions an elasticity of 1,
and all quadratic functions have an elasticity of 2. This
also extends to decreasing functions such as a/X for
which the corresponding elasticity is −1. For more com-
plex functions, the value of the elasticity can depend
on the location of the steady state. However, even in
this case the interpretation of the elasticity is intuitive.
For instance, the Holling type-II functional response is
linear for low prey density and saturates for high prey
density (Holling 1959). The corresponding elasticity is
approximately 1 in the linear regime, but asymptotically
decreases to 0 as the predation rate approaches satu-
ration. A similar comparison for the Holling type-III
function is shown in Fig. 1.

Elasticities are used in several scientific disciplines
because they are directly interpretable and can be easily
estimated from data (Fell and Sauro 1985). In partic-
ular, we emphasize that elasticities are defined in the
state that is observed in the system under considera-
tion, and thus do not require reference to unnatural
situations, such as half-maximum values or rates at
saturation that often cannot be observed directly. We
note that in previous publications the elasticities have
sometimes been called exponent parameters and have
been obtained by a normalization procedure. In com-
parison to this previous procedure, the application of
Eq. 6, proposed here, provides a significant shortcut.

We now return to the discussion of the exam-
ple system. So far, we have managed to express the
Jacobian determining the stability of all steady states by
the three parameters α, sx, and dx. Because this simple
example contains only one variable, the Jacobian is a
1-by-1 matrix. Therefore, the Jacobian has only one
eigenvalue which is directly

λ = α (sx − dx) . (12)
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a

b

Fig. 1 Illustration of elasticity. a In the specific example system,
a reproduction rate, S(X) of the form of a Holling type-III
functional response, aX2/(k2 + X2), is assumed. This function
starts out quadratically at low values of the population density
X, but saturates as X increases. b The corresponding elasticity,
sx, is close to two near the quadratic regime χ = X∗/k ≈ 0, but
approaches zero as saturation sets in

The steady state under consideration is stable if λ < 0,
or equivalently

sx < dx. (13)

In words: In every system of the form of Eq. 4, a given
steady state is stable whenever the elasticity of the
mortality in the steady state exceeds the elasticity of
reproduction.

A change in stability occurs when the elasticities of
gain and loss become equal,

sx = dx. (14)

If this occurs the eigenvalue of the Jacobian vanishes
and the system undergoes a saddle-node bifurcation.

For gaining a deeper understanding of how the gen-
eralized analysis relates to conventional models, it is
useful to consider a specific example. We emphasize
that this step is not part of the analysis of the gen-
eralized model, but is presented here solely for the
purpose of illustration. One model that immediately
comes to mind is logistic growth, which can formally
be written as a linear reproduction and quadratic mor-
tality. However, based on our discussion above, it is
immediately apparent that linear reproduction must

correspond to sx = 1 and quadratic mortality to dx = 2.
Without further analysis we can therefore say that
steady states found for a single population under logis-
tic growth must always be stable regardless of the other
parameters.

A more interesting example is obtained when one
assumes a reproduction rate following a Holling type-
III kinetic and linear mortality,

d
dt

X = aX2

k2 + X2
− b X, (15)

where a is the growth rate at saturation, k is the half-
saturation value of growth, and b is the mortality rate.
This example system can be investigated by explicit
computation of steady states and subsequent stability
and bifurcation analysis. This procedure is shown in
most textbooks on mathematical ecology and is hence
omitted here. For the present example the conventional
analysis reveals that, for high k only a trivial equilib-
rium at zero population density exists, so that the pop-
ulation becomes extinct deterministically (Fig. 2a). As
k is reduced, a saddle-node bifurcation occurs, which
marks the onset of a strong Allee effect. In the bifur-
cation, a stable nontrivial equilibrium and an unstable
saddle point are created. Beyond the bifurcation a pop-
ulation can persist if its initial abundance is above the
saddle point. In this case, the population asymptotically
approaches the stable equilibrium. By contrast, a popu-
lation which is initially below the saddle point declines
further and approaches the trivial (extinct) equilibrium.

For comparing the results from the specific analysis
to the generalized model, we compute the elasticities
that characterize the steady states found in the specific
model. Because the mortality rate is assumed to be
linear, we know dx = 1. The elasticity of the growth
function can be found by applying Eq. 6 to the known
growth function of the specific model. This yields

sx = 2
1 + χ2

(16)

where χ = X∗/k. A detailed derivation of this rela-
tionship using a normalization procedure instead of
the shortcut, Eq. 6, is given in Gross et al. (2004).
Equation 16 shows that the elasticity of growth is sx ≈ 2
for X∗ ≪ k, but approaches sx = 0 in the limit X∗ ≫ k
(Fig. 1).

In Fig. 2a, we have color coded the growth elasticity
of steady states visited by the system as k is changed.
We note that the saddle-node bifurcation occurs at sx =
dx = 1, conforming to our expectation from the gener-
alized model. Moreover, in the unstable saddles we find
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Fig. 2 Comparison of generalized and conventional modeling.
a Bifurcation diagram of a specific example (Eq. 15). The lines
correspond to the locations of steady states, which are stable
equilibria (solid) or saddles (dashed). The color encodes the
elasticity of growth, sx, in the respective steady states. The figure
confirms the our expectation from the generalized model that
steady states are stable whenever sx < dx, where dx = 1 in the
specific example. The two steady states vanish in a saddle-node

bifurcation, which occurs at sx = dx. Parameters: a = b = 1. b
General results. The correspondence between generalized and
specific model can be seen explicitly by mapping the steady states
from the specific model into the generalized parameter plane. In
this plane, the stable and unstable states are separated by the
stability boundary (black line, Eq. 14) at which the saddle-node
bifurcation occurs

sx > dx, whereas the stable equilibria are characterized
by sx < dx, which is in agreement with Eq. 13.

We can now map the steady states found in the
specific model into the generalized parameter plane
spanned by the elasticities sx and dx (Fig. 2b). Because
dx = 1 in the specific example, irrespective of X∗, all
steady states end up on a single line in the generalized
diagram. Other areas of the bifurcation diagram, not
visited by the specific example, correspond to other
models that assume other functional forms for the mor-
tality. In this diagram the two colliding branches of
stable and unstable steady states are mapped into the
corresponding stable and unstable region of the gener-
alized parameter space, respectively. Therefore the two
branches appear on different sides of the bifurcation.
However, from the bifurcation condition, Eq. 14, we
know that this bifurcation must occur as the diagonal
line in the diagram is crossed.

The comparison of the two bifurcation diagrams in
Fig. 2 highlights the differences between generalized
and conventional modeling. In the conventional model
different numbers of steady states are found depend-
ing on the specific functional forms that are assumed.
Moreover, for a given set of parameter values multiple
steady states can coexist that differ in their stability
properties. Because the generalized model comprises
a whole class of specific models a single set of gener-
alized parameters corresponds to an infinite number
of different steady states, found in different specific
models. However, the solution branches of this family
of models have been unfolded such that all steady states

corresponding to the same set of generalized parame-
ters must have the same stability properties.

It is apparent that for a given specific example, the
conventional analysis reveals more detailed insights
than the generalized analysis. For instance the presence
of the strong Allee effect that is directly evident in
the conventional bifurcation diagram, Fig. 2a, can only
be inferred indirectly from the presence of the saddle-
node bifurcation in the generalized analysis, Fig. 2b.
However, the conventional analysis provides insights
only into the dynamics of the specific model under
consideration, whereas the generalized analysis reveals
the stability boundary (black line in Fig. 2b) that is
valid for the whole class of models and is hence robust
against uncertainties in the specific model.

A major advantage of the generalized model is that
results are obtained without explicit computation of
steady states. In the conventional model that we dis-
cussed in this section, steady states can be computed
analytically. However, even for slightly more complex
models this computation becomes infeasible as it in-
volves (under the best circumstances) factorization of
large polynomials. Also the numerical computation of
steady states poses a serious challenge for which no
algorithm with guaranteed convergence is known. Be-
cause generalized modeling avoids the explicit com-
putation of steady states, the approach can be scaled
to much larger networks. The additional complications
that arise in the generalized modeling of larger systems
and their resolution are the subject of the subsequent
sections.
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Predator–prey dynamics

In our second example, we consider a slightly more
complex system where intra- and interspecific interac-
tions are considered. Departing from the single-species
model, we introduce a predator Y whose growth is
entirely dependent on X. This leads to the generalized
model

d
dt

X = S(X) − D(X) − F(X, Y), (17)

d
dt

Y = γ F(X, Y) − M(Y), (18)

where S(X) and D(X) describe the reproduction and
mortality of the prey X, the function F(X, Y) models
the interaction of X with the predator Y, M(Y) is
the mortality of Y, and γ is a constant conversion
efficiency.

In principle this model can be analyzed by the pro-
cedure proposed in the previous section. However, for
gaining a different perspective we use the alternative
procedure for deriving Jacobians that was used in pre-
vious papers on generalized modeling, such as Gross
and Feudel (2006). This alternative procedure starts by
introducing a set of normalized variables

x = X
X∗ (19)

y = Y
Y∗ (20)

and normalized functions, indicated by lower-case let-
ters, such as

s(x) = S(X)

S∗ = S(xX∗)

S∗ , (21)

where we used the abbreviated notation S∗ := S(X∗).
Using these definitions we can rewrite Eqs. 17, 18 as

d
dt

x = S∗

X∗ s(x) − D∗

X∗ d(x) − F∗

X∗ f (x, y), (22)

d
dt

y = γ
F∗

Y∗ f (x, y) − M∗

Y∗ m(y). (23)

By normalizing the system we have mapped the previ-
ously unknown steady state (X∗, Y∗) to a known loca-

tion (x∗, y∗) = (1, 1). Linearizing the system around this
steady state, we obtain the Jacobian

J∗ =

⎛

⎜⎜⎜⎝

S∗

X∗ sx − D∗

X∗ dx − F
X∗ fx − F∗

X∗ fy

γ
F∗

Y∗ fx γ
F∗

Y∗ fy − M∗

Y∗ my

⎞

⎟⎟⎟⎠
,

(24)

where we again used roman indices to indicate partial
derivatives, sx = ∂s(x)/∂x|∗. As suggested by this nota-
tion the partial derivatives of the normalized functions
are logarithmic derivatives (i.e., elasticities) of the orig-
inal functions. For instance

sx := ∂ log S
∂ log X

∣∣∣∣
∗

(25)

We now continue in analogy to the previous section.
We absorb the steady-state abundances X∗, Y∗, rates
S∗, D∗, F∗, M∗, and the constant γ into a set of scale
parameters. In doing so, we have to take care to satisfy
the demands of stationarity for every variable. Let us
first consider the predator. The corresponding equation
of motion, Eq. 18, implies

γ F∗ − M∗ = 0. (26)

Analogously to the example from the previous section,
we can therefore define

αy := γ
F∗

Y∗ = M∗

Y∗ . (27)

which automatically satisfies Eq. 26 but does not re-
strict the per-capita rates otherwise. As in the previous
example, the αy can be interpreted as a characteristic
time scale, now describing the predator population.

Equation 27 allows us to replace all occurrences
of the unknown constants from the elements of the
Jacobian referring to the predator, i.e., the bottom
row in Eq. 24. This is possible because the equation
of motion for the predator, Eq. 18, contains only two
terms and can therefore be characterized by two rates,
the reproduction rate and the mortality rate. By consid-
ering steady states we impose one constraint, Eq. (26).
Thus, only one degree of freedom remains, which can
be captured by one parameter αy.

An additional complication is encountered for the
prey. Because we modeled predation and mortality
from intraspecific competition as independent loss
terms, the corresponding equation of motion, Eq. 17
contains three terms. Demanding stationarity yields the
constraint

S∗ − D∗ − F∗ = 0. (28)
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The presence of three terms, subject to one constraint,
implies that two generalized parameters have to be
defined to replace all occurrences of the unknown rates.
From the point of view of mathematics, many alterna-
tive ways of defining these parameters exist. However,
from an ecological point of view these ways differ in
the interpretability of the parameters they introduce.
Analyzing generalized models we found it almost al-
ways advantageous to introduce (a) one parameter cap-
turing the characteristic timescale of the corresponding
variable, i.e., the turnover rate, (b) a set of branching
parameters capturing the relative contribution of the
individual loss terms to the total turnover, (c) a set of
branching parameters capturing the relative contribu-
tion of individual gain terms to the total turnover.

By definition, the turnover rate (step a) equals the
sum of all gains and the sum of all losses. In the present
example, we thus define

αx := S∗

X∗ = D∗

X∗ + F∗

X∗ , (29)

where all gains appear on the left side of the equals sign
and all losses appear on the right. In step (b), we define
the parameter

β := 1
αx

D∗

X∗ , (30)

and its complement

β̄ := 1
αx

F∗

X∗ , (31)

that capture the relative contribution of losses from
predation and intraspecific competition to the total
turnover rate. Because the losses have to add up to the
total turnover, the parameters have to obey β + β̄ = 1.
Therefore, only one of the two parameters, say β, can
be considered as an independent parameter. Because
there is only one gain term, step (c) in the outline above
is not necessary in the present example.

As we already argued above, we obtained two inde-
pendent parameters describing the biomass flow in the
prey population: the per-capita turnover rate, α, and
the relative contribution of intraspecific competition
to the total turnover rate β, i.e., the fraction of losses
caused by competition.

In general, the same strategy for defining branching
parameters can be applied to equations containing any
number of terms. For each variable, firstly define a
parameter α, which denotes the total turnover rate,
separating gain and loss terms, and identifying the char-
acteristic timescale of a species. Branching parameters
are then assigned to any number of terms that define

the relative contribution of the individual gains and
losses to the total turnover within a system.

Returning to the Jacobian of the predator–prey sys-
tem, we substitute the scale and branching parameters
into Eq. 24, which yields

J∗ =
(

αx
(
sx − βdx − β̄ fx

)
−αxβ̄ fy

αy fx αy
(

fy − my
)
)

. (32)

In contrast to the system from the previous section,
the Jacobian is now a 2-by-2 matrix. For this Jaco-
bian, the eigenvalues can still be computed analytically.
However, analytical eigenvalue computation is tedious
already for systems with three variables, and in general
impossible for systems with more than four variables.
Nevertheless, analytical results can be obtained even
for larger systems by deriving test functions that di-
rectly test for bifurcations, without an intermediate
computation of eigenvalues.

Saddle-node bifurcations occur when a single real
eigenvalue crosses the imaginary axis (Kuznetsov
2004). Therefore, a zero eigenvalue must be present in
a saddle-node bifurcation. This implies that the product
of all eigenvalues must vanish in this bifurcation. Be-
cause the product of all eigenvalues equals the determi-
nant of a matrix, we can locate saddle-node bifurcations
by demanding that the determinant of the Jacobian,
det J∗, vanishes. For the present example this yields the
condition

sx = (βdx + β̄ fx)( fy − my) − β̄ fx fy

fy − my
. (33)

For finding the Hopf bifurcations, we note that the
trace of a matrix (the sum of diagonal elements) is
identical to the sum of the eigenvalues (Kuznetsov
2004). For a two-dimensional system this implies that
the trace of the Jacobian, tr J∗, must vanish in a Hopf
bifurcation, because there is only one purely symmetric
eigenvalue pair, which adds up to zero. For detecting
Hopf bifurcations we have to additionally demand that
the det J∗ > 0, because tr J∗ = 0 is also satisfied if there
is a real symmetric pair of eigenvalues, which is not
characteristic of the Hopf bifurcation. In the predator–
prey model, the Hopf bifurcation is found at

sx = βdx + β̄ fx − r( fy − my), (34)

where r = αy/αx is the turnover rate of the predator
measured in multiples of the turnover rate of the prey.
For systems with more than two variables, the test
function for the Hopf bifurcation can be derived by a
procedure that is described in Gross and Feudel (2004).

The results of the bifurcation analysis suggest that
high values of fx exert a stabilizing influence on the
system. Previous studies (Gross et al. 2004; Stiefs et al.
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2010) showed that this parameter is relevant for en-
richment scenarios. In many previously proposed mod-
els, predator saturation increases when resources are
added, leading to a decrease of fx and therefore to
instability. Identification of fx as a crucial parameter
for stability in the generalized model enables us to ask
what functional responses would lead to an intermedi-
ate stabilizing effect of enrichment that is sometimes
observed in nature. The discussion in Gross et al. (2004)
showed that reasonable functional responses can be
found that exhibit such an intermediate stabilization,
but are very hard to distinguish from, say Holling type-
II kinetics, if they were encountered in nature.

To illustrate the differences between generalized and
conventional modeling, we again compare the general-
ized model with a specific example. For this purpose
we focus on the Rosenzweig–MacArthur model. In this
model, the prey exhibits logistic growth in absence of
the predator, the predator–prey interaction is modeled
by a Holling type-II functional response, and the mor-
tality of the predator is assumed to be density indepen-
dent. This leads to

d
dt

X = rX
(

1 − X
k

)
− aXY

b + X
,

d
dt

Y = γ
aXY

b + X
− mY, (35)

where r is the intrinsic growth rate of X, k is the carry-
ing capacity of X, a is the predation rate at saturation,
b is the half-saturation value of the predation rate,
γ is the biomass conversion efficiency, and m is the
mortality rate of Y.

The results of a conventional bifurcation analysis are
shown in Fig. 3a. If the carrying capacity k is too small
then the predator population cannot invade the system.
As the carrying capacity is increased a transcritical bi-
furcation occurs in which a stable equilibrium appears,
such that the predator–prey system can reside in sta-
tionarity. If the carrying capacity is increased further,
a supercritical Hopf bifurcation occurs, in which the
equilibrium is destabilized. Subsequently, the system
resides on a stable limit cycle, which emerges from the
Hopf bifurcation. On this cycle, pronounced predator–
prey oscillations can be observed, which become larger
as the carrying capacity is further increased.

One can imagine that if an additional parameter
is changed then critical values of the carrying capac-
ity at which the bifurcations occur change as well.
This can be visualized in two-parameter bifurcation
diagrams, which we have already used for the gen-
eralized model in Fig. 2b. In such diagrams, Hopf
and saddle-node bifurcation points form lines in the

two-dimensional parameter space. For the specific ex-
ample of the Rosenzweig–MacArthur system, a two-
parameter bifurcation diagram is shown in Fig. 3b. This
diagram illustrates that increasing the mortality rate m
of the predator, shifts both the transcritical bifurcation
point and the Hopf bifurcation point to higher values of
the carrying capacity.

For comparing the specific example to the gener-
alized model, we compute the generalized parameters
that are observed in the steady states of the specific
model. Above, we have already noted that logistic
growth can be understood as a combination of linear re-
production and quadratic mortality, which corresponds
to sx = 1 and dx = 2. Furthermore, the assumptions of
density independent mortality and linear dependence
of the predation rate on the predator imply my =
fy = 1. The elasticity fx of the predation rate with
respect to prey was derived in Gross et al. (2004) and
is

fx = 1
1 + χ

, (36)

where χ = X∗/b . Accordingly, fx = 1 in the limit of
vanishing prey density and fx = 0 in the limit of infinite
prey. Note that in the Rosenzweig–MacArthur model,
the predator population tightly controls the prey pop-
ulation. Once the predator can invade, any further
increase in carrying capacity only increases the station-
ary population of the predator, while the stationary
population size of the prey remains invariant.

Apart from the parameters β and fx, shown in
Fig. 3c, the only other parameter that is not fixed to
a specific value is the relative turnover of the predator
r = αy/αx. This parameter cannot affect the transcrit-
ical bifurcation, because turnover rates by construc-
tion cannot appear in test functions of transcritical or
saddle-node bifurcations. By contrast, turnover rates
in general affect Hopf bifurcations. However, in the
present example the dependence of the Hopf bifur-
cation test function, Eq. 34 on r disappears if density
independent mortality and linear dependence of the
predation rate on the predator population are assumed.
Therefore, the parameter has no influence on the bi-
furcation surfaces. We note that this is a special prop-
erty of the Rosenzweig–MacArthur system and not a
generic feature of the larger class of systems described
by the generalized model. As argued in van Voorn et al.
(2007) and Gross and Feudel (2009) one can expect
that typically mortality is slightly super-linear because
of overcrowding, diseases and other limiting resources,
whereas predation may be sublinear due to predator
interference. In this case, large values of r can have a
stabilizing effect.
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Fig. 3 Comparison of a generalized model and a specific exam-
ple for predator–prey interaction. a Bifurcation diagram of the
Rosenzweig–MacArthur model. The predator Y can invade the
system when the carrying capacity k of the prey exceeds a thresh-
old, corresponding to a transcritical bifurcation (TC). Increasing
the carrying capacity further eventually leads to destabilization
in a Hopf bifurcation (H). Lines mark stable (solid) and unstable
(dashed) steady states and the upper and lower turning points
of a stable limit cycle (dotted). Parameters: r = 1, a = 2, γ =
0.5, b = 1, m = 0.5. b A two-parameter bifurcation diagram of
the Rosenzweig–MacArthur model as a function of the mortality
of Y, m, and the carrying capacity of X, k. Stable equilibria are
confined to the narrow region between the TC (blue) and the

H (red) bifurcation points. The black lines indicate the steady
states found in the section of this diagram shown in (a). c A two-
parameter bifurcation diagram of the generalized predator–prey
model as a function of the proportional mortality of X due to
intraspecific competition (β) and the elasticity of the predation
rate with respect to the prey ( fx). Bifurcations and labels are as
above. The black line plots the trajectory of the Rosenzweig–
MacArthur system as a specific example of the class of mod-
els. d A three-parameter bifurcation diagram of the generalized
predator–prey model. The bifurcation points now form surfaces.
The black lines indicate the steady states from (a), while the
grey plane indicates all steady states that can be reached in the
Rosenzweig–MacArthur model if k and m are varied as in (b)

We can now map the steady states to the specific
system into the generalized parameter space. A two-
parameter bifurcation diagram of the generalized
model is shown in Fig. 3c. In this diagram, bifurcations
of saddle-node type occur only on the boundary of
the parameter space, where the branching parameter
β vanishes. This parameter value indicates that none of
the biomass loss of the prey occurs because of preda-
tion. Even without comparing to the specific example
we can conclude that this bifurcation must be a tran-
scritical bifurcation in which the predator enters the
system. To illustrate this we map additionally the two-
dimensional bifurcation diagram (Fig. 3b) into the gen-
eralized parameter space. This mapping is visualized

in a three-dimensional bifurcation diagram shown in
Fig. 3d. Such three-dimensional diagrams can be gen-
erated from analytical test functions using the method
described in Stiefs et al. (2008) and have been used in
a number of previous studies (Gross and Feudel 2004;
Gross et al. 2004, 2005, 2009; Stiefs et al. 2010; Gross
and Feudel 2009). As in the two-parameter diagrams,
every point in the diagram represents a family of steady
states. The parameter volume is divided by bifurcation
surfaces, which separate steady states with qualitatively
different local dynamics. Specifically, all steady states
located between the two bifurcation surfaces are stable,
whereas the steady states below the Hopf bifurcation
surface are unstable.
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In the present example, we were able to show all
relevant parameters in a single three-parameter bifur-
cation diagram. Let us remark that this is in general
not possible as a larger number of parameters is often
necessary to capture the dynamics of a system at the de-
sired degree of generality. Even if a generalized model
contains only five parameters, the three-dimensional
slice that can be visualized in a single three-parameter
diagram is relatively small when compared with the
five-dimensional space. Nevertheless, plotting three-
parameter bifurcation diagrams can be very valuable
because a three-dimensional diagram is often sufficient
to locate bifurcations of higher codimension. Such bi-
furcations are formed at the point in parameter space
where different bifurcation surfaces meet or intersect.
The presence of such bifurcations can reveal additional
insights into global properties of the dynamics. For
instance in Gross et al. (2005) the presence of a certain
bifurcation of higher codimension in generalized mod-
els was used to show that chaotic dynamics generically
exist in long food chains. An extensive discussion of
bifurcations of higher codimension and their dynami-
cal implications is presented in Kuznetsov (2004). For
obtaining a general overview of the dynamics of larger
systems containing hundreds or thousands of parame-
ters, bifurcation diagrams are not suitable. However,
these systems can be analyzed by statistical sampling
techniques described in the following section.

Intraguild predation

As the final example in the present paper, we consider
the effect of omnivory on a small food web. Omnivory
is defined by an organism’s ability to consume prey that
inhabit multiple trophic levels. It has been the subject
of much recent interest because it is notable for its per-
vasiveness within well-studied ecosystems (Polis 1991),
as well as its relatively complex dynamics (McCann and
Hastings 1997; Kuijper et al. 2003; Tanabe and Namba
2008).

Omnivory has been historically viewed as a para-
doxical interaction. Initially, the presence of om-
nivory was thought to be entirely destabilizing, and,
as a consequence, rarely observed in nature (Pimm
and Lawton 1978). However, further explorations of
ecological networks have reported omnivory to be a
common architectural component within larger food
webs (Bascompte et al. 2005; Stouffer and Bascompte
2010). Furthermore, theoretical investigations have re-
vealed parameter regions that lead to both stabilizing
and destabilizing dynamics in simple models (Holt and
Polis 1997; McCann and Hastings 1997; Kuijper et al.

2003; Tanabe and Namba 2008; Namba et al. 2008;
Verdy and Amarasekare 2010). These theoretical ar-
guments are limited by the fact that such models are
either constrained to specific functional forms or report
dynamics across parameter ranges that may not be
biologically significant. A generalization of the entire
class of simple omnivory models is poised to elucidate
under which conditions stable or unstable dynamics are
bound to occur, regardless of the functional relation-
ships among or between species in the model.

A specific case of omnivory is intraguild predation
(IGP), which in its simplest incarnation appears in a
three-species system containing a consumer and re-
source pair (as in the prior example), and an omnivore
that predates upon both the consumer and resource.
Traditional analyses of IGP models reached the follow-
ing: (1) the coexistence of all species in the system is
contingent on the greater competitive abilities of Y,
relative to the omnivore Z , to consume the shared
resource (Holt and Polis 1997; McCann and Hastings
1997); (2) enrichment destabilizes the system (Holt and
Polis 1997; Diehl and Feissel 2001); (3) if the gain of
the omnivore by predation on the consumer exceeds
the negative competitive effects of the consumer, then
the consumer facilitates a larger population of the om-
nivore than can be maintained in its absence (Diehl and
Feissel 2001).

In the present paper, we consider the generalized
model

d
dt

X = S(X) − D(X) − F(X, Y) − G(X, Y, Z )

d
dt

Y = γ F(X, Y) − H(X, Y, Z ) − M(Y)

d
dt

Z = K(X, Y, Z ) − M(Z ). (37)

In addition to the terms already presented in the
predator–prey model from “Predator–prey dynamics”,
we included the functions G and H, which denote the
loss of the resource and consumer from predation by
the omnivore and the function K denoting the gain of
the omnivore that arises from this predation. Note that
we modeled the two different predatory losses of X as
separate terms G and H because these losses can be
assumed to arise independently of each other. By con-
trast the gain of the omnivore derives from predation
on two different prey species and is modeled as a single
term K because finite handling time, saturation effects,
and possibly active prey-switching behavior prevent the
predator from feeding on both sources independently
of each other.
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By following the procedure described in the previous
sections, we construct the Jacobian

J∗ =

⎛

⎝
αx(sx − δdx − δ̄(βx fx − β̄xgx)) −αxδ̄(βx fy + β̄xgy) −αxβ̄xδ̄gz

αy( fx − βyhx) αy( fy − βyhy − β̄ymy) −αyβyhz

αzkx αzky αz(kz − mz)

⎞

⎠ (38)

where the elasticities are defined as in the previous
sections and the scale parameters are

αx = S∗

X∗ = D∗

X∗ + F∗

X∗ + G∗

X∗ ,

αy = γ
F∗

Y∗ = H∗

Y∗ + M∗

Y∗ ,

αz = K∗

Z ∗ = M∗

Z ∗ , (39)

the branching parameters are

δ = D∗

D∗ + F∗ + G∗ , βx = F∗

F∗ + G∗ , βy = H∗

H∗ + M∗ ,

(40)

and δ̄ = 1 − δ, β̄x = 1 − βx, and β̄y = 1 − βy.
Let us remark that the branching parameters in the

model were defined such that the parameter δ separates
the predatory losses of the resource from the compe-
tition term. This was done to reflect our opinion that
these losses are qualitatively different. An alternative
procedure would have been to use three branching
parameters, βd, β f , βg, to denote directly the different
proportions the three losses contribute to the total per-
capita loss rate of X. In this case, we would have to de-
mand βd + β f + βg = 1 for consistency, such that only
two of the parameters could be varied independently.

In principle, the Jacobian of the omnivory model
could be analyzed straight away. However, more in-
sights can be gained by building more biological knowl-
edge into the model. In the following, we integrate
this knowledge into the Jacobian derived above, by a
refinement procedure that can be used to iteratively
integrate new information into the generalized model
when such information becomes available.

In the present example, we want to integrate the
observation that the different elasticities associated
with functions describing predation by the omnivore
cannot be unrelated. Above, we already argued that the
nonlinearity in the predator functional response arises
mainly from predator saturation. If the availability of a
given prey species is increased then predator saturation
increases and consequently predation on other prey
populations decreases. Thus saturation governs both

the nonlinearity of a given predator–prey interaction
and the response of the predation rate to changes in
the abundance in a another prey species. For making
these dependencies explicit in our model we first note
that saturation depends on the total amount of prey
available to the predator (see Holling 1959 for a de-
tailed discussion). For simplicity, we assume that this
total amount, T, is a weighted sum of sizes of the two
prey populations, such that

T(X, Y) = Tx X + TyY. (41)

We denote the relative proportions that both types of
prey (here, consumer and resource) contribute to the
diet of the predator (omnivore) as

tx = Tx X
T(X, Y)

, ty = TyY
T(X, Y)

, (42)

such that tx + ty = 1. If a species contributes a given
proportion to the diet of the omnivore, it is reason-
able to assume that the same species carries an equal
portion of the losses inflicted by the omnivore, such
that G(X, Y, Z ) ∝ tx K(T(X, Y), Z ) and H(X, Y, Z )

∝ ty K(T(X, Y), Z ).
By considering these assumptions in the steady state

under consideration and applying the identity Eq. 6 we
find

gx = kttx + ty,

gy = ktty − ty,

hx = kttx − tx,

hy = ktty + tx,

kx = kttx,

ky = ktty. (43)

An exemplary derivation of one of the relations is
shown in Appendix 2. The new parameter kt appear-
ing above is the elasticity of the omnivore’s gain with
respect to the total amount of available prey, i.e., the
saturation of the omnivore. This parameter can be
interpreted completely analogously to the parameter fx

in the predator–prey system.
Taking additional biological insights into account has

led to relationships that can be directly substituted into
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the previously derived Jacobian. Doing so removes six
parameters from the generalized model at the cost of
introducing two new ones. The substitution makes the
model less general and more specific, allowing us to
extract more conclusions on a narrower range of mod-
els. By this procedure new insights on a given system
can be integrated iteratively without re-engineering the
model from scratch. We believe that such refinements
will be valuable for future food web models possibly
containing hundreds of species.

Let us remark that iterative refinement is not con-
tingent on the availability of a specific, i.e., non-
general, equation. Instead of the specific relationship
in Eq. 41, we could have also used the general rela-
tionship T(X, Y) = Cx(X) + Cy(Y), where Cx and Cy

are general functions. Even substituting this general
relationship into the model leads to a reduction of pa-
rameters of the model. Furthermore, the functions Cx

and Cy can be used to introduce active prey switching.
This has been done for instance in the food web models
proposed in Gross and Feudel (2006) and Gross et al.
(2009).

Using the techniques described above, the local bi-
furcations of the IGP model can be calculated analyt-
ically. However, because the number of parameters is
relatively large, even three-parameter diagrams reveal
only a very limited insight into the dynamics of the
system. We therefore use an alternative approach and
explore the parameter space by a numerical sampling
procedure. Because all parameters in the model have
clear interpretation, we can assign a range of realistic
values to each of the parameters (see Table 1). We
generate an ensemble of parameter sets by randomly
assigning each parameter a value drawn from the re-
spective range. The stability of the steady state cor-

responding to a sample parameter set is then deter-
mined by numerical computation of the eigenvalues
of the corresponding Jacobian. Because of the numer-
ical efficiency of eigenvalue computation, ensembles
of millions or billions of sample parameter sets can
be evaluated in reasonable computational time. Based
on such large ensembles, a sound statistical analysis of
models containing hundreds or thousands of parame-
ters is feasible. An example of such an analysis in a 50-
species model was presented in Gross et al. (2009). We
refer the reader to this paper for an illustration of the
ecological insights that can be gained from correlation
analysis in generalized models.

To assess the dependence of the stability of the IGP
model on the parameters, we generated 108 random pa-
rameter sets. Both scale and elasticity parameter values
were drawn independently from uniform distributions.
Subsequently, each parameter set was assigned a sta-
bility value of 1 if it is found to correspond to a stable
steady state and 0 if it corresponds to an unstable steady
state. The dependence of system stability on individual
parameter values was then quantified by computing
the correlation coefficient between a given parameter
and the stability value over the whole ensemble. Strong
positive correlations indicate that large values of the
respective parameter promote stability, while strong
negative correlations indicate that large values of the
parameter reduce stability.

The results of the numerical analysis (Fig. 4) show
that the proportional loss of the resource due to in-
traspecific competition, δ, correlate with stability. This
is not surprising because of the known stabilizing effect
of super-linear mortality. To a lesser extent high values
of βx promote stability. This shows that stability is
enhanced if the predatory losses of the resource occur

Table 1 Values and ranges of
the parameter sampling
assumed to compute Fig. 4

The timescales, αx, αy and αz,
are assumed to scale
allometrically. The parameter
r describes the timescale
separation. The elasticities,
sx,dx,my, fy, fx,kt and kz, are
assumed to be one (linear),
two (quadratic) or between 0
and 1 (saturation, see text).
Only the elasticity mz is
assumed to be slightly super
linear. The branching
parameters, δ,βx and βy, are
per definition between 0
and 1

Parameter Value or range Meaning
αx 1 Turnover rate of resource
αy r Turnover rate of consumer
αz r2 Turnover rate of omnivore
r 0 to 1 Allometric factor
sx 1 Elasticity of resource production
dx 2 Elasticity of intraspecific competition in resource
my 1 Elasticity of consumer mortality
mz 1 Elasticity of omnivore mortality
fy 1 Elasticity of consumption with respect to consumer
fx 0 to 1 Elasticity of consumption with respect to resource
kt 0 to 1 Elasticity of predation with respect to prey/resource
kz 1 Elasticity of predation with respect to omnivore
δ 0 to 1 Proportion of losses of the resource due to mortality
βx 0 to 1 Proportion of resource consumption due to consumer
βy 0 to 1 Proportion of losses of consumer due to predation
tx 0 to 1 Proportion of resource in omnivore diet
ty 1 − tx Proportion of consumer in omnivore diet
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Fig. 4 The dependence of the stability of the generalized IGP
model on the parameters: r, βx, δ, fx, tx, kt and βy. Depen-
dencies were quantified by calculating the correlation coefficients
between a given parameter and system stability. 108 parameters
sets were assigned randomly from uniform distributions over
specified ranges. Error bars are too small to be visible. Strong
positive correlations indicate that large values of the specific
parameter promote stability, while strong negative correlations
indicate that large values of the specific parameter promote
instability. The parameters δ, and to a lesser extent βx, corre-
sponding to high intraspecific competition of X and a strong
trophic interaction between X and Y, stabilize the generalized
IGP model. High values of βy, strong extrinsic mortality of Y, is
associated with destabilizing effects. The interpretation of para-
meters follows the lines explained in Section Density-dependent
growth of a single species. Additional information is provided in
Table 1

mainly because of predation by the consumer. This is
consistent with observation 1 stated in the introduc-
tion of this section that stability is contingent on the
greater competitive ability of the consumer. Further-
more, Fig. 4 shows a stabilizing effect of kt and fx,
which denote the elasticity of functional responses of
the omnivore and the consumer respectively. Already
in the previous section we linked such elasticities to en-
richment. In enrichment scenarios using common func-
tional forms these parameters tend to decrease lead-
ing to instability, which explains observation 2 stated
above. We remark, however, that moderate enrichment
may have a stabilizing effect if alternative functional
forms, such as the one proposed in Gross et al. (2004)
are used. The third observation, stated above, is hard to
investigate in the generalized model because it refers to
abundances in the steady state, which are not directly
accessible in the generalized analysis. However, in ad-
dition to previous findings the generalized analysis re-
veals that the fraction of losses of the consumer caused
by the omnivore, βy, is strongly negatively correlated
with stability. This indicates that scenarios in which the

omnivore benefits from the presence of the consumer
are likely to be unstable.

We remark that the precise results of the sam-
pling analysis shown here are not independent of the
specific ranges and distributions that are used for gen-
erating the ensemble. Although the error bars of the
statistical analysis rapidly become very small, minor
differences between correlation coefficients should not
be over-interpreted. Nevertheless, the stability correla-
tion analysis is a powerful tool that can very quickly
convey an impression of the stabilizing and destabi-
lizing factors in large networks. Ideally, this analysis
should be followed up by more refined statistical ex-
ploration of the ensemble. More detailed insights in the
behavior of the system can be gained for instance by
plotting histograms of the proportion of stable states
that are found if one parameter is set to a specific value,
while all others are varied randomly. Such histograms
have for instance been used in Steuer et al. (2006),
Steuer et al. (2007), Gross et al. (2009) and Zumsande
and Gross (2010). Because these more detailed analyses
clearly exceed the scope of the present paper, we post-
pone further analysis of the IGP model to a separate
publication.

Conclusions

In the present paper, we have illustrated the funda-
mental ideas or procedures of generalized modeling
and extended the approach of generalized modeling.
Generalized models can reveal conditions for the stabil-
ity of steady states in large classes of systems, identify
the bifurcations in which stability is lost, and provide
some insights into the global dynamics of the system.
They can be seen as an intermediate approach that
has many advantages of conventional equation-based
models, while coming close to the efficiency of random
matrix models. This efficiency, both in terms of manual
labor and CPU time, highlights generalized modeling
as a promising approach for detailed analysis of large
ecological systems. Although we have restricted the
presentation to models with up to three variables, these
simple examples already contain all of the complexities
that are encountered in larger systems, such as the 50-
species model studied in Gross et al. (2009).

The presentation of generalized modeling in the
present paper differed significantly from previous pub-
lications. The differences arise in part from the stronger
focus on fundamental concepts and modeling strategies
and in part from a newly proposed shortcut that facili-
tates the formulation of generalized models
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Throughout this paper, we have contrasted several
generalized models with conventional counterparts.
We emphasize that this was done purely for illus-
tration of the results of generalized modeling. Gen-
eralized modeling should by no means be regarded
as an alternative modeling approach replacing con-
ventional models. Note that generalized modeling is
mainly useful in systems for which little information is
available, whereas in well-known systems many more
insights may be extractable by conventional models.
We point out that the iterative refinement procedure
proposed here, allows a researcher to start out with a
generalized model and then successively integrate new
information as it becomes available until eventually a
conventional model is obtained. Generalized modeling
is ideally applied if one asks how and under which con-
ditions a given dynamical phenomenon, such as stable
coexistence, oscillations or chaos, is possible. Because
of its efficiency and generality, generalized modeling
can then be used to explore a large range of model
structures for evidence pointing to the phenomenon un-
der consideration. Thereby, promising specific model
systems can be identified which can subsequently be
analyzed in more detail by conventional model analysis.
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Appendix 1

The formulation of elasticity parameters is contingent
on the relationship

∂ F
∂ X

∣∣∣∣
∗

= F∗

X∗
∂ log F
∂ log X

∣∣∣∣
∗

(44)

where F represents some function of X. For proving
this relationship, we consider the right-hand side and
multiply it by 1 = ∂ F/∂ F

F∗

X∗
∂ log F

∂ F
∂ F

∂ log X

∣∣∣∣
∗
, (45)

where (∂ log F/∂ F)∗ simplifies to 1/F∗. This results in

∂ F
∂ X

∣∣∣∣
∗

= 1
X∗

∂ F
∂ log X

∣∣∣∣
∗
. (46)

In the previous steps, we replaced log F in the numera-
tor of the derivative. To replace log X in the numerator
we proceed analogously

∂ F
∂ X

∣∣∣∣
∗

= 1
X∗

∂ X
∂ log X

∂ F
∂ X

∣∣∣∣
∗
, (47)

We now consider the second factor of the right-hand
side. To evaluate the partial derivative we define X =
eu and write

∂ X
∂ log X

∣∣∣∣
∗

= ∂eu

∂ log eu

∣∣∣∣
∗

= ∂eu

∂u

∣∣∣∣
∗

= eu
∣∣
∗ = X∗. (48)

substituting back into Eq. 47 we obtain

∂ F
∂ X∗

∣∣∣∣
∗

= 1
X∗ X∗ ∂ F

∂ X

∣∣∣∣
∗

= ∂ F
∂ X

∣∣∣∣
∗
. (49)

which proves Eq. 44.

Appendix 2

Starting from

G(T(X, Y), Z ) = ϵgTX X
T(X, Y)

K(T(X, Y), Z ) (50)

the elasticity with respect to X can be subsequently be
formulated as

gx = ∂ log G
∂ log X

= X∗

G∗
∂

∂ X
ϵgTx X

T(X, Y)
K(T(X, Y), Z )

= ϵg X∗T∗

ϵgTx X∗K∗

(
Tx K∗

T∗ + Tx X∗

T∗
∂K
∂ X

+Tx X∗K∗ ∂

∂ X
1

T(X, Y)

)

= T∗

Tx K∗

(
Tx K∗

T∗ + Tx K∗

T∗
X∗

K∗

× ∂K
∂ X

+ Tx K∗

T∗ T∗ X∗
(

− 1
(T∗)2

∂T
∂ X

))

= 1 + T∗

K∗
∂K
∂T

X∗

T∗
∂T
∂ X

− X∗

T∗
∂T
∂ X

= 1 + kttx − tx

= kttx + ty. (51)
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